Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 240: 124452, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068541

RESUMO

In this work, the starch/polybutylene adipate terephthalate (PBAT) composite films with high starch content were prepared by hot-pressing and ultraviolet cross-linking methods using cassava starch, benzophenone (BP), degradable PBAT and citric acid as film-forming substrate, photosensitizer, toughening material and solvent, respectively. The results showed that starch and PBAT had excellent performance, resulting in the composites films exhibit robust tensile strength (9.90 MPa), decent elongation at break (500.05 %) and excellent shape memory property. Under 30 % pre-tensile strain, the shape memory fixity and recovery ratios reached 96.58 % and 93.94 %, respectively. In addition, the starch-based films were successfully rendered hydrophobic by PBAT hydrophobic characteristics. PBAT not only secures the biodegradability of the starch/PBAT composites films, but also improves the mechanical properties of them, and meets the requirements of the thermal shrinkage films when subjected to large strain.


Assuntos
Poliésteres , Amido , Amido/química , Poliésteres/química , Polienos , Adipatos
2.
J Environ Manage ; 330: 117178, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621315

RESUMO

Soil nitrification driven by ammonia-oxidizing microorganisms is the most important source of nitrous oxide (N2O) and nitric oxide (NO). Biochar amendment has been proposed as the most promising measure for combating climate warming; both have the potential to regulate the soil nitrification process. However, the comprehensive impacts of different aged biochars and warming combinations on soil nitrification-related N2O and NO production are not well understood. Here, 1-octyne and acetylene were used to investigate the relative contributions of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to potential nitrification-mediated N2O and NO production from the fertilized vegetable soil with different aged biochar amendments and soil temperatures in microcosm incubations. Results demonstrated that AOB dominated nitrification-related N2O and NO production across biochar additions and climate warming. Biochar amendment did not significantly influence the relative contribution of AOB and AOA to N2O and NO production. Field-aged biochar markedly reduced N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield while fresh- and lab-aged biochar produced negligible effects on AOB-dependent N2O yield. Climate warming significantly increased N2O production and AOB-dependent N2O yield but less so on NO production. Notably, the relative contribution of AOB to N2O production was enhanced by climate warming, whereas AOB-derived NO showed the opposite tendency. Overall, the results revealed that field-aged biochar contributed to mitigating warming-induced increases in N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield. Our findings provided guidance for mitigating nitrogen oxide emissions in intensively managed vegetable production under the context of biochar amendments and climate warming.


Assuntos
Óxido Nítrico , Verduras , Nitrificação , Amônia , Microbiologia do Solo , Archaea , Óxido Nitroso/análise , Solo , Oxirredução
3.
J Colloid Interface Sci ; 630(Pt A): 34-45, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215822

RESUMO

It is widely recognized that designing a special micro/nanostructure of microwave absorption materials for enhancing interface polarization benefits dielectric loss capability. In this work, a facile charge-driven self-assembly strategy is reported to prepare wrinkled reduced graphene oxide wrapped polymer-derived carbon (CS@rGO) microspheres. Noticeably, the unique three-dimensional (3D) multi-interface structure imparts CS@rGO microspheres with promoted microwave absorption capability. Adjusting the charge-driven self-assembly cycle times, the dielectric properties and impedance matching characteristics of the CS@rGO microspheres can be optimized. The minimum reflection loss (RLmin) of the sample can reach up to -55.24 dB at 13.75 GHz and the effective absorption bandwidth (RL ≤ -10 dB) is 4.30 GHz (11.55-15.85 GHz) at only a thickness of 1.85 mm. This research provides a pathway to explore the high-performance microwave absorber through the construction of the unique 3D multi-interface structure.


Assuntos
Carbono , Micro-Ondas , Microesferas , Polímeros
5.
Nanoscale Adv ; 4(18): 3804-3815, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133325

RESUMO

Exploration of high-performance electromagnetic interference (EMI) shielding materials has become a trend to address the increasing electromagnetic (EM) wave pollution environment. In this paper, oriented graphene fibre film (GFF)/polydimethylsiloxane (PDMS) nanocomposites with one-ply unidirectional, two-ply cross-ply, and two-ply unidirectional configurations were prepared using wet-spinning and hot-pressing techniques in a two-step process. Due to the anisotropic electrical performance of GFF, the one-ply laminate exhibits EMI shielding anisotropy that is affected by fibre orientation relative to the electric field component in EM waves. The maximum shielding difference at 8.8 GHz is up to 32.0 dB between the fibre orientation parallel to and perpendicular to the electric field component. In addition, we found that adding a layer of GFF is an intuitive method to enhance the shielding efficiency (SE) of GFF/PDMS nanocomposites by providing more interfaces to enhance absorption losses. An optimal EMI shielding performance of a two-ply unidirectional laminate is observed with an SE value of 50.6 dB, which shields 99.999% of EM waves. The shielding mechanisms are also discussed and clarified from the results of both experimental and theoretical analyses by adjusting the GFF structural parameters, such as the fibre orientation, areal density, number of plies and stacking sequence.

6.
Sci Total Environ ; 853: 158643, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089042

RESUMO

There is recognition that biochar addition is an appropriate measure to mitigate methane (CH4) emissions by promoting potential methane oxidation (PMO) in the field. However, the mechanism for different field-aged biochars and effective duration after field application are not well documented. Based on a long-term field experiment, biochar was field aged and separated from two contrasting acidic (Ba) and saline (Bs) paddy fields. Then, the effects of different aged biochars on PMO in acidic and saline paddy soils were explored by incubation experiment. There were five treatments for each soil group: soil without biochar (CK), biochar-enriched paddy soil (2 or 6 years) (NB), fresh biochar amendment (Bf), aged biochar separated from acidic paddy soil amendment (Ba), and aged biochar separated from saline paddy soil amendment (Bs). Results showed that saline paddy soils had a significantly higher PMO than acidic paddy soils under treatment without biochar, and that PMO in acidic paddy soil was enhanced by various biochar amendments, whereas those biochar amendments had no significant effects on PMO in saline paddy soil. PMO was positively correlated with pmoA abundance, N consumption rate and pH of soil-biochar mixture. Aged biochar separated from different fields had conflicting influences on soil pH, N consumption rate and PMO. Ba lost its initial effect on changing PMO as compared to Bf treatment when added back into acidic paddy soil. To the contrary, the acidic paddy soil NB treatment containing biochar added six years before possessed the highest value of PMO among all ten treatments. This study suggested that acidic paddy soil with biochar amendment could mitigate CH4 emissions by promoting PMO for a prolonged period, though aged biochar separated from the same field had a limited impact on reducing CH4 emissions.


Assuntos
Oryza , Solo , Metano , Carvão Vegetal
7.
Ecotoxicol Environ Saf ; 242: 113932, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914399

RESUMO

Chemical fertilization in excess and warming disrupt the soil microbes and alter resource stoichiometry, particularly in intensive vegetable soils, while the effects of these variables on the temperature sensitivity of soil organic carbon (SOC) decomposition (Q10) and SOC stability remain elusive. Thus, we collected six long-term vegetable soils along a climatic gradient to examine the microbial mechanisms and resource stoichiometry effects on fluctuations in Q10 and SOC stability induced by warming and fertilization from vegetable soils. Our results showed that the SOC decomposition was dominated by microbes and regulated by stoichiometry. Compared to cold sites, higher Q10 of SOC decomposition was observed in warm sites, accompanied by lower enzyme activities, microbial CUE, and C:N ratio. In this context, warming reduced SOC stability as evidenced by up to 31.8% greater Q10 (1.45) at warm sites than at cold sites (1.10) owing to less richness of microbial communities and lower microbial CUE. The relatively lower pH and labile organic C value restricted the development of microbial richness, and decreased C- and N-related enzyme activities and a lower C:N ratio resulted in microbial CUE reduction. Additionally, N fertilization altered the C:N imbalance and enhanced SOC stability in vegetable soils, exhibiting an increase of Q10 values, particularly of great importance in warm sites. Collectively, our findings emphasize the importance of the microbial mechanism and resource stoichiometry in predicting variations in Q10 and fluctuations in SOC stability, and provide theoretical advice on improving management policies in the context of warming and fertilization from vegetable soils.


Assuntos
Carbono , Solo , Carbono/química , China , Nitrogênio/análise , Solo/química , Microbiologia do Solo , Verduras
8.
Environ Pollut ; 307: 119491, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597489

RESUMO

Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N2O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N2O and NO emissions. However, the aging effects of biochar on soil N2O and NO production and the relevant mechanisms are not thoroughly understood. A15N tracing microcosm study was conducted to clarify the responses of N2O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N2O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N2O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N2O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially lab-aged biochar had no effect on N2O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N2O and NO fluxes were closely associated with soil NH4+-N and NO2--N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N2O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N2O and NO mitigation in vegetable soils.


Assuntos
Solo , Verduras , Carvão Vegetal , Desnitrificação , Óxido Nítrico , Nitrificação , Óxido Nitroso/análise , Microbiologia do Solo
9.
Int J Gen Med ; 15: 2501-2513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282646

RESUMO

Purpose: Ferroptosis is an iron-dependent and reactive oxygen species (ROS)-reliant form of cell death, exhibiting cellular, molecular, and gene-level characteristics distinct from those of necrosis, autophagy, apoptosis, and pyroptosis. Solute carrier family 7 member 11 (SLC7A11), which encodes a cystine/glutamate antiporter transmembrane protein, inhibits ferroptosis by importing cystine and promoting glutathione (GSH) biosynthesis and was found to be overexpressed in multiple human cancers. However, the specific role and underlying mechanism of SLC7A11 in cancers remains poorly characterized. This research aimed to identify the relationship between SLC7A11 expression and tumor microenvironment and visualize its prognostic value in pan-cancer. Patients and Methods: Transcriptomic data for 6313 tumors and normal samples across 20 cancer types were acquired from The Cancer Genome Atlas (TCGA) database. Besides, we presented a novel bioinformatics pipeline that uncovered the impacts of SLC7A11 on cancer prognosis, tumor mutational burden (TMB), immune cell infiltration in tumor microenvironment, and drug responses. The Genotype-Tissue Expression (GTEx), cBioportal, TCGA and Connectivity Map (CMap) databases were used to explore the expression, genetic alterations, immune microenvironment, and drug responses of SLC7A11. A series of deconvolution algorithms, including EPIC, CIBERSORT and GSEA, were utilized for multidimensional analyses of the cancer transcriptomic data. Results: SLC7A11 was found to be highly expressed in the 20 types of cancer, especially in solid tumors. Survival analysis uncovered that most cancer patients with up-regulated expression of SLC7A11 showed poor prognosis, suggesting that SLC7A11 is a potential oncogene in most cancer types. Furthermore, the expression level of SLC7A11 was confirmed to be associated with immune cell infiltration in tumor microenvironment, TMB, and drug responses. Gene set enrichment analysis (GESA) revealed that dysregulation of SLC7A11 was associated with metabolic and immunity-related signaling pathways in the cancers. Conclusion: The comprehensive pan-cancer analyses identified SLC7A11 as an attractive biomarker for immune infiltration and poor prognosis in cancers, shedding new light on the therapeutics of cancers.

10.
J Clin Hypertens (Greenwich) ; 24(5): 644-651, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199942

RESUMO

The objective was to evaluate the correlation between N-terminal pro-atrial natriuretic peptide (NT-proANP), corin and the severity of target organ injury in hypertensive disorders of pregnancy. A total of 78 women with hypertensive disorders of pregnancy and 49 normotensive pregnancies were enrolled. The clinical characteristics, laboratory index and echocardiogram results were collected. NT-proANP, corin, sFlt-1 and PlGF levels were measured. A receiver's operating characteristics (ROC) curve was performed to evaluate the efficacy of predicting target organ injury in the HDP group. The NT-proANP, corin, and sFlt-1/PlGF ratio were increased in the HDP group (p < .05). The area under the curve (AUC) predicted by NT-proANP and corin were larger than sFlt-1/PlGF ratio (0.779, 0.867, and 0.766, respectively). The creatinine and urine protein were significantly increased, while the estimated glomerular filtration rate (eGFR) was dramatically decreased in the HDP group (p < .05 each). The left atrial diameter (LAD), left atrial volume index (LAVI), left ventricular posterior wall thickness (LVPWT), and left ventricular septal thickness (LVST) were larger in the HDP group (p < .001 each). The NT-proANP/corin levels were positively correlated with LAD, creatinine, and urine protein, and negatively correlated with eGFR in HDP group (p < .05 each). Multiple regressions demonstrated that NT-proANP was an independent risk factor of LAD and urine protein, and corin was an independent risk factor of creatinine and eGFR in HDP group. NT-proANP and corin may be reliable biomarkers for evaluating the severity of target organ damage in the hypertensive disorders of pregnant patients.


Assuntos
Fator Natriurético Atrial , Hipertensão Induzida pela Gravidez , Precursores de Proteínas , Serina Endopeptidases , Fator Natriurético Atrial/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Creatinina/metabolismo , Feminino , Átrios do Coração/metabolismo , Humanos , Hipertensão Induzida pela Gravidez/diagnóstico , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/patologia , Gravidez , Precursores de Proteínas/metabolismo , Serina Endopeptidases/metabolismo
11.
Int J Biol Macromol ; 193(Pt B): 1685-1693, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748788

RESUMO

With the increasingly serious plastic pollution, people's demand for the multi-functional biodegradable plastics is becoming more and more urgent. Inspired by the crosslinked shape memory polymers, the crosslinked starch films were synthesized by inducing the decomposition of benzophenone into free radical and depriving hydrogen on starch macromolecules under UV irradiation, in order to gain a high shape memory performance. The results showed that a three-dimensional crosslinking network between starch macromolecule chains was formed. Compared with the uncrosslinked starch films, the photo-crosslinked films not only had higher mechanical property (tensile strength increased by 154%), but also had better water resistance (water contact angle from 60° to 87°) due to the reduction of free hydroxyl groups. In addition, the stable covalent bonds serving as netpoints endow photo-crosslinked films with great improvement in shape memory property, with nearly 180° bending recovery. More importantly, the maximum shape memory fixity ratio (Rf) and shape memory recovery ratio (Rr) under stretch deformation were 96.5% and 99.8%, respectively. And the Rf and Rr could reach 94.6% and 79.8% even at higher strain. In all, the excellent shape memory performance and good degradability crosslinked starch films, which have great potential application in disposable heat-shrinkable packaging materials.


Assuntos
Plásticos Biodegradáveis/química , Embalagem de Alimentos , Membranas Artificiais , Materiais Inteligentes/química , Amido/química
12.
Front Pharmacol ; 12: 715302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393795

RESUMO

Objective: It has been reported that atrial natriuretic peptide (ANP) regulates lipid metabolism by stimulating adipocyte browning, lipolysis, and lipid oxidation, and by impacting the secretion of adipokines. In our previous study, we found that the plasma ANP concentration of hypertensive disorders of pregnancy (HDP) was significantly increased in comparison to that of normotensive pregnancy patients. Thus, this study's objective was to investigate the lipid profile in patients with HDP and determine the effects of ANP on the cholesterol efflux in THP-1 macrophages. Methods: A total of 265 HDP patients and 178 normotensive women as the control group were recruited. Clinical demographic characteristics and laboratory profile data were collected. Plasma total triglycerides (TGs), total cholesterol (TC), low-density cholesterol (LDL-C), and high-density cholesterol (HDL-C) were compared between the two groups. THP-1 monocytes were incubated with different concentrations of ANP. ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) mRNA and protein were evaluated. ABCA1- and ABCG1-mediated cholesterol efflux to apolipoprotein A-Ⅰ (apoA-Ⅰ) and HDL, respectively, were measured by green fluorescent labeled NBD cholesterol. Natriuretic peptide receptor A (NPR-A) siRNA and specific agonists of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and liver X receptor α (LXRα) were studied to investigate the mechanism involved. Results: Plasma TG, TC, LDL-C, and LDL-C/HDL-C were significantly increased, and HDL-C was significantly decreased in the HDP group in comparison to the control (all p < 0.001). ANP inhibited the expression of ABCA1 and ABCG1 at both the mRNA and protein levels in a dose-dependent manner. The functions of ABCA1- and ABCG1-mediated cholesterol efflux to apoA-I and HDL were significantly decreased. NPR-A siRNA further confirmed that ANP binding to its receptor inhibited ABCA1/G1 expression through the PPAR-γ/LXRα pathway. Conclusions: ABCA1/G1 was inhibited by the stimulation of ANP when combined with NPR-A through the PPAR-γ/LXRα pathway in THP-1 macrophages. The ABCA1/G1-mediated cholesterol efflux was also impaired by the stimulation of ANP. This may provide a new explanation for the decreased level of HDL-C in HDP patients.

13.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012065

RESUMO

Fibroin nanofibers (FNFs) achieved from physical treated silk can keep its original crystal structure, showing excellent mechanical properties, however, processing the FNFs into fibers is still a challenge. Herein, a brand-new environmentally friendly approach is proposed to manufacture FNFs-based composite nanofibers. The water-soluble polymer, poly(vinyl alcohol) PVA, was applied to increase the viscoelasticity of the spinning dope, and the content of FNFs can reach up to 20 wt%. The established phase image of spinning suggested that the concentrations ranging from 6 wt% to 8 wt% are premium to achieving relatively homogenous FNFs/PVA nanofibers. Random fibers were deposited on a fixed collector, while the fiber orientation intensity increased with the rotational speed of drum and started decreasing after 12 m/s. The mechanical properties of the composite nanofibers showed the similar tendency of variation of fiber orientation. In addition, chemical changes, crystallinity, and thermal properties of the composite nanofibers were further clarified by means of FTIR, DSC, and TG. As a result, high FNFs contained nanofibers with excellent thermal properties were created from an aqueous solution. This study is the first original work to realize the spinnability of FNFs, which provides a new insight of the FNFs.

14.
Pregnancy Hypertens ; 23: 73-78, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33264706

RESUMO

INTRODUCTION: Atrial natriuretic peptide (ANP) regulates water-salt balance and blood pressure by promoting renal sodium and water excretion. OBJECTIVE: Our study was to investigate plasma N-terminal pro-atrial natriuretic peptide (NT-proANP) and corin in hypertensive disorders of pregnancy (HDP) patients. Furthermore, the relationship between corin/NT-proANP and neonatal adverse prognosis were evaluated. METHODS: Seventy-seven HDP patients and forty-eight normotensive women as control group were recruited. Clinical characteristic and plasma were collected. Plasma NT-proANP and corin were determined by ELISA. Gestational age, neonatal weight and APGAR scores were recorded. Statistical analysis was conducted. RESULTS: NT-proANP and corin were significantly increased in HDP group compared with that of control (P < 0.05). NT-proANP and corin were significantly elevated in HDP patients who suffered from premature delivery (P < 0.05). Both NT-proANP and corin were negatively associated with delivery time, neonatal weight and APGAR scores in HDP group. Multiple regressions demonstrated that NT-proANP and corin were independent risk factor of delivery time, neonatal weight and APGAR scores. CONCLUSIONS: Plasma NT-proANP and corin were significantly increased in HDP. NT-proANP and corin were associated with neonatal adverse events in HDP patients. Thus, NT-proANP and corin may become new biomarkers for evaluating severity of pregnancy and neonatal adverse events in HDP patients.


Assuntos
Fator Natriurético Atrial/sangue , Hipertensão Induzida pela Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia , Serina Endopeptidases/sangue , Adulto , Índice de Apgar , Biomarcadores/sangue , Peso ao Nascer , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Hipertensão Induzida pela Gravidez/sangue , Recém-Nascido , Gravidez , Nascimento Prematuro/sangue
15.
Carbohydr Polym ; 248: 116777, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919567

RESUMO

Introducing functional metal nanoparticles (NPs) into flexible substrate is being increasingly attempted to expand their application. Here, we extend the synthesis of cellulose to its unmodified dope achieving freestanding nanocomposite decorated with bimetallic Ag-Au NPs through the one pot reaction. In the procedure, cellulose chain not only acts as a reducing agent but also a biocompatible support for NPs with a mean size of 7.9-9.7 nm. Meanwhile, changing the addition order of Ag+ and AuCl4- generated different atom arrangement in the bimetallic NPs. Moreover, the correlation of bioactivity to NP atom arrangement was studied. The result revealed that the nanocomposite containing NPs with an ultrathin Ag-rich outermost shell around an Au-rich core showed better bactericidal ability while lower cytotoxicity. In addition, the nanocomposite exhibited a sensitive SERS property for determination of R6G with a high enhancement factor of 108.


Assuntos
Celulose/química , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos
16.
ACS Appl Mater Interfaces ; 12(37): 42179-42192, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32822534

RESUMO

Flexible strain sensors have shown great application value in wearable devices. In the past decades, researchers have spent numerous efforts on developing high-stretchability, excellent dynamic durability, and large linear working range flexible strain sensors and shaped a series of important research results. However, the viscoelasticity of the elastic polymer is always a big challenge to develop a flexible sensor. Here, to overcome this challenge, we developed a novel self-repairing carbon nanotubes/ethylene vinyl acetate (CNTs/EVA) fiber strain sensor prepared by embedding the CNTs on the surface of the swollen shape memory EVA fiber via the ultrasonic method. The CNTs/EVA fiber strain sensors responded with significant results, with high stretchability (190% strain), large linear working range (up to 88% strain), excellent dynamic durability (5000 cycles), and fast response speed (312 ms). In addition, the permanently damaged conductive network of the strain sensors, caused by the viscoelasticity of elastic polymer, can restore above the transforming temperature of the shape memory CNTs/EVA fiber. Moreover, the performance of the restored strain sensors was almost as same as that of the original strain sensors. Furthermore, human health monitoring tests show that the CNTs/EVA fiber has a broad application prospect for human health monitoring in wearable electronic devices.


Assuntos
Etilenos/química , Nanotubos de Carbono/química , Ondas Ultrassônicas , Compostos de Vinila/química , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Tamanho da Partícula , Propriedades de Superfície
17.
Polymers (Basel) ; 11(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574960

RESUMO

One-dimensional shape memory polymer fibers (SMPFs) have obvious advantages in mechanical properties, dispersion properties, and weavability. In this work, a method for fabricating semi-crystallization ethylene-vinyl acetate copolymer (EVA) fiber with two-way shape memory effect by melt spinning and ultraviolet (UV) curing was developed. Here, the effect of crosslink density on its performance was systematically analyzed by gel fraction measurement, tensile tests, DSC, and TMA analysis. The results showed that the crosslink density and shape memory properties of EVA fiber could be facilely adjusted by controlling UV curing time. The resulting EVA fiber with cylindrical structure had a diameter of 261.86 ± 13.07 µm, and its mechanical strength and elongation at break were 64.46 MPa and 114.33%, respectively. The critical impact of the crosslink density and applied constant stress on the two-way shape memory effect were analyzed. Moreover, the single EVA fiber could lift more than 143 times its own weight and achieve 9% reversible actuation strain. The reversible actuation capability was significantly enhanced by a simple winding design of the single EVA fiber, which provided great potential applications in smart textiles, flexible actuators, and artificial muscles.

18.
Nanomaterials (Basel) ; 8(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388883

RESUMO

Poly(ethylene terephthalate) (PET) fabric-reinforced polyvinyl chloride (PVC) composites have a wide range of applications, but the interface bonding of PET fabric/PVC composites has remained a challenge. In this work, a new in-situ SiO2/tributyl citrate sizing agent was synthesized according to the principle of "similar compatibility." The developed sizing agent was used as a PET surface modifier to enhance the interfacial performance of PET fabric/PVC composites. The morphology and structure of the PET filaments, the wettability and tensile properties of the PET fabric, the interfacial adhesion, and the tensile and tearing properties of the PET fabric/PVC composites were investigated. Experimental results showed that many SiO2 nanoparticles were scattered on the surface of the modified PET filaments. Moreover, the surface roughness of the modified PET filaments remarkably increased in comparison with that of the untreated PET filaments. The contact angle of the modified PET filaments was also smaller than that of the untreated ones. The peeling strength of the modified PET fabrics/PVC composites was 0.663 N/mm, which increased by 62.50% in comparison with the peeling strength of the untreated ones (0.408 N/mm). This work provides a new approach to the surface modification of PET and improves the properties of PET fabric/PVC composites.

19.
Environ Sci Pollut Res Int ; 25(31): 31307-31317, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194577

RESUMO

Knowledge about the impacts of fresh and field-aged biochar amendments on greenhouse gas (CH4, N2O) emissions is limited. A field experiment was initiated in 2012 to study the effects of fresh and field-aged biochar additions on CH4 and N2O emissions and the associated microbial activity during the entire rice-growing season in typical rice-wheat rotation system in Southeast China. CH4 and N2O fluxes were monitored, and the abundance of methanogen (mcrA), methanotrophy (pmoA), ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nitrite reductase (nirS, nirK), N2O reductase (nosZ), and potential soil enzyme activities related to CH4 and N2O were simultaneously measured throughout different rice developmental stages. There were three treatments: control (urea without biochar), fresh BC (urea with fresh biochar added in 2015), and aged BC (urea with 3-year field-aged biochar added in 2012). Results showed that field-aged biochar significantly decreased seasonal CH4 emissions by 16.8% in relation to the fresh biochar, though no significant differences were detected between biochars and control treatment. The structural equation model indicated that soil pH, microbial biomass carbon (MBC), pmoA, and mcrA were the main factors directly influenced by fresh and aged biochar amendments; aged biochar showed a negative effect while fresh biochar showed positive effects on CH4 fluxes. Both fresh and field-aged biochar obviously increased AOA and AOB abundances and reduced the (nirS+nirK)/nosZ ratio during the entire rice-growing season, although no significant effects were observed on seasonal N2O emissions. Therefore, biochar amendment produced long-term effects on total CH4 and N2O emissions through observed influences of soil pH and functional gene abundance. The figure shows how fresh and field-aged biochar differentially affected CH4 production and oxidation and N2O production and reduction through related functional gene abundances. Blue arrows indicate suppressing while pink arrows indicate promoting effect.


Assuntos
Poluição do Ar/prevenção & controle , Carvão Vegetal , Metano/análise , Óxido Nitroso/análise , Oryza , Microbiologia do Solo , Carbono/análise , China , Gases de Efeito Estufa , Estações do Ano , Solo/química , Triticum , Ureia
20.
Sci Rep ; 6: 38688, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929052

RESUMO

The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha-1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.


Assuntos
Agricultura , Carvão Vegetal/química , Metano/análise , Nitrogênio/química , Oryza , Solo/química , Triticum , China , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...